Приятно считать, что титан поддаётся механической обработке подобно нержавеющим сталям. Это значит, что обрабатывать титан в 4-5 раз труднее, чем обычную сталь, но это всё же не составляет неразрешимой проблемы.

Основные проблемы при обработке титана — это большая склонность его к налипанию и задиранию, низкая теплопроводность, а также то обстоятельство, что практически все металлы огнеупорны и растворяются в титане, в результате чего представляет собой сплав титана и твёрдого материала режущего инструмента.

Такая обработка вызывает быстрый износ резца. Для уменьшения налипания и задирания и для отвода большого количества тепла, которое выделяется при резании, применяют охлаждающие жидкости.

Точение заготовки производят с помощью резцов из твёрдых сплавов причём скорость обработки, как правило, ниже, чем при точении нержавеющей стали. Если необходимо разрезать листы из титана, то эту операцию осуществляют на гильотинных ножницах.

Сортовой прокат больших диаметров режут механическими пилами, применяя ножовочные полотна с крупным зубом. Менее толстые прутки разрезают на токарных станках. При фрезеровании титан остаётся верным себе и налипает на зубья фрезы. Фрезы тоже изготовляют из твёрдых сплавов, а для охлаждения применяют смазки, отличающиеся большой вязкостью.

При сверлении титана основное внимание обращают на то, чтобы стружка не скапливалась в отводящих канавках, так как это быстро повреждает сверло. В качестве материала для сверления титана применяют быстрорежущую сталь. При использовании титана как конструкционного материала титановые детали соединяют друг с другом и с деталями из иных материалов разными методами.

Основной метод — сварка.

Самые первые попытки сварить титан были неудачными, что объяснялось взаимодействием расплавленного металла с кислородом, азотом и водородом воздуха, ростом зерна при нагреве, изменениями в микроструктуре и другими факторами, приводимые к хрупкости шва. Однако все эти проблемы, ранее казавшиеся неразрешимыми, были решены в самые короткие сроки в наши дни сварка титана — обычная промышленная технология.

Но, хотя проблемы решены, сварка титана не стала простой и лёгкой. Основная её трудность и сложность заключается в необходимости постоянного и неукоснительного предохранения сварного шва от загрязнения примесями. Поэтому при сварке титана используют не только инертный газ высокой чистоты и специальные бескислородные флюсы, но и разнообразные защитные козырьки, прокладки, которые защищают остывающие.

Чтобы максимально снизить рост зерна и уменьшить изменения в микроструктуре, сварку ведут с большой скоростью. Почти все виды сварки производят в обычных условиях, применяя специальные меры для защиты нагретого металла от соприкосновения с воздухом. Но мировая практика знает и сварку в контролируемой атмосфере. Такая защита сварного шва обычно необходима при выполнении особо ответственных работ, когда требуется стопроцентная гарантия того, что сварной шов не будет загрязнён.

Если свариваемые части не велики, сварку ведут в специальной камере, заполненной инертным газом. Сварщик хорошо видит всё, что ему нужно через специальное окно. Когда же сваривают большие детали и узлы, контролируемую атмосферу создают в специальных вместительных герметичных помещениях, где сварщики работают, применяя индивидуальные системы жизнеобеспечения. Разумеется, эти работы ведут сварщики самой высокой квалификации, но и обычную сварку титана должны проводить только специально обученные этому делу люди. В тех случаях, когда сварка не возможна или попросту не целесообразна, прибегают к пайке.

Пайка титана осложняется тем, что он при высоких температурах химически активен и очень прочно связан с покрывающей его поверхность — окисной плёнкой. Подавляющее большинство металлов непригодно для использования в качестве припоев при пайке титана, так как получаются хрупкие соединения. Только чистые серебро и алюминий подходят для этой цели. 

Соединять титан с титаном, а также с другими металлами можно и механически — клепкой или при помощи болтов. При использовании титановых заклёпок время клёпки увеличивается почти вдвое по сравнению с применением высокопрочных алюминиевых деталей, а гайки и болты из нового промышленного металла непременно покрывают слоем серебра или синтетического материала — тефлона, иначе при завинчивании гайки титан будет, как это ему неизменно присуще, налипать и задираться и резьбовое соединение не сможет выдержать больших напряжений.

Склонность к налипанию и задиранию, обусловленная высоким коэфициентом трения, — очень серьёзный недостаток титана. Это приводит к тому, что титановые сплавы быстро изнашиваются и их нельзя использовать для изготовления деталей, работающих в условиях трения скольжения. При скольжении по любому металлу титан налипает на его поверхность, и деталь вязнет, схваченная липким слоем титана. Впрочем, говорить, что титановые сплавы нельзя применять при изготовлении трущихся деталей, неверно.

Существует немало способов, упрочняющих поверхность титана и устраняющих склонность к налипанию.

Один из них — азотирование. Процесс заключается в том, что детали, нагретые до 850-950 градусов, выдерживают в чистом газообразном азоте более суток. На поверхности металла образуется золотисто-жёлтая плёнка нитрида титана большой микротвёрдости. Износостойкость титановых деталей повышается во много раз и не уступает изделиям из специальных поверхностно упрочнённых сталей.

Другой распространённый метод устранения склонности титана к задиранию — оксидирование. При этом в результате нагрева на поверхности деталей образуется окисная плёнка. При низкотемпературном оксидировании свободный доступ воздуха к металлу затруднён и окисная плёнка получается плотной, хорошо связанной с основной толщей титана. Высокотемпературное оксидирование заключается в том, что в течении 5-6 часов детали выдерживают на воздухе нагретыми до 850 градусов, а затем резко охлаждают в воде, чтобы удалить с поверхности рыхлую окалину. В результате оксидирования сопротивление износу возрастает в 15-100 раз.

Титановые сплавы несравненно более стойки и оборудование, изготовленное из них, служит гораздо дольше.

Сварка титана с другими металлами, повторяем, практически невозможна.

 Как же соединяют титан со сталью?

Существует несколько методов.

Когда оборудование не предназначено для работы при высоких температурах и не подвергается воздействию вакуума, поверхность его футеруют (т.е. выкладывают) тонким слоем титана. Но футерованное оборудование нельзя применять при температурах выше 100 градусов, так как при нагревании сталь расширяется значительно в большей степени, чем титан, что и приводит к повреждению футерованной конструкции. Кроме того, наличие зазора между футеровкой и кожухом не позволяет применять такое оборудование в процессах. связанных с воздействием вакуума.

В этом случае для изготовления оборудования используют двухслойный металл титан — сталь, где слой титана составляет от одной двадцатой до одной пятой части от всей толщины металла.

И здесь слой титана обеспечивает коррозийную стойкость, а более дешевый материал — заданные механические характеристики. Титан и сталь соединяют друг с другом при помощи взрывной волны или методом прокатки в вакууме. В результате материалы связаны между собой не просто механически, а физически, что приводит к улучшению теплопередачи и позволяет оборудованию из двухслойного металла выдерживать повторяющие нагревы до 500 и более градусов и закалку в воде.

Из биметалла титан — сталь изготовляют такое оборудование, как варочные котлы и отбельные башни целлюлозно-бумажного производства, ёмкости и колонны, применяемые в нефтехимии и металлургии. Использование биметаллического листа взамен цельнотитанового даёт существенную экономию.Методом литья изготавливают запорную арматуру, части насосов, приборов, детали, применяемые в машиностроении.

В промышленности при производстве и обработке титана образуется большое количество отходов, состоящих из титановой губки, стружки, обрезков, кусков, лома. Основная масса этих отходов не используется, а накапливается на предприятиях, где отходы различных сплавов перемешиваются друг с другом и загрязняются.

Специалисты уже давно задумываются над тем, как использовать этот металл. Наиболее целесообразно перерабатывать отходы титана во вторичные сплавы. Эти сплавы несколько уступают основным по однородности, прочности и другим механическим характеристикам. Загрязнённость примесями приводит к тому, что их стойкость против коррозии ниже, чем у серийных сплавов, и тем не менее вторичные титановые сплавы в достаточной степени прочны и коррозионностойкие. Их можно с успехом и большой пользой применять в химической, нефтеперерабатывающей, лёгкой, пищевой промышленности.

Сейчас ведутся опытно-промышленные разработки вторичных сплавов и изделий из них, получаемых методом литья. Вторичные титановые сплавы во многих агрессивных средах по своей коррозийной стойкости незначительно уступают первичным сплавам, а в некоторых средах даже превосходят их. Что же касается их стоимости, то при широком производстве они будут дешевле первичных на 25-30 процентов.

Значение металлов в человеческом обществе всё более возрастает. Переворот в технике происходит с интенсивным развитием алюминиевой и магниевой промышленности. В последние десятилетия человечество получило в своё распоряжение группы редких металлов. И вот уже в наши дни, в самые последние годы на авансцену истории «поднимается» новый промышленный металл — титан. Титан с большим правом, чем алюминий, можно назвать металлом нашего века, точнее — второй его половины, так как этот новый конструкционный материал впервые стали производить и использовать только в пятидесятые годы.

Впрочем, титан так и называют: «металл 20 века». И как много значений у слова «титан», так много эпитетов и наименований у самого металла. «Вечный», «парадоксальный», «металл сверхзвуковых скоростей, «металл будущего», «дитя войны» — вот только некоторые из них. Титан называют металлом будущего. Это, конечно, правильно. В будущем появятся новые области применения замечательного материала, люди создадут сплавы с ещё более удивительными свойствами. Но ведь будущее начинается сегодня, будущее и настоящее не отделены непроходимой границей. Титан давно стал материалом современности — ценным, важным и необходимым. Больше того, широкое, повсеместное его применение как раз позволит скорее приблизить то светлое и прекрасное будущее, о котором мы все мечтаем.

Share.
Exit mobile version